
Byzantine-Tolerant Distributed Coordinate Descent

Deepesh Data

University of California, Los Angeles, USA

Email: deepeshdata@ucla.edu

Suhas Diggavi

University of California, Los Angeles, USA

Email: suhasdiggavi@ucla.edu

Abstract—We study distributed coordinate descent (CD)
in the master-worker architecture under adversarial attacks,
where the data is partitioned (across the parameter space)
and distributed among m worker nodes (t of which can be
maliciously corrupt), which update some coordinates of their
part of the parameter vector, in parallel and iteratively, using
CD updates, with the help of the master. We propose a method
based on data encoding and real error correction to combat the
adversary. Our method can tolerate up to ⌈m−1

2
⌉ corrupt nodes,

which is information-theoretically optimal. Our design gives a
trade-off between the resiliency t, the required redundancy, and
the computation at master and worker nodes. For example, with
constant overhead in the storage and computational complexity
over that required by the plain distributed CD, we can tolerate
up to m/3 corrupt nodes. We design a sparse encoding scheme,
which yields low encoding complexity.

I. INTRODUCTION

Distributed implementations for large-scale computation

are becoming increasingly common, especially with the

advent of large-scale optimization and learning [1]. With

growing interest in federated learning [2], harnessing of

non-enterprise nodes in the computation is being envisaged.

This is accentuated by increasing malicious software, and

hardware attacks on computation nodes [3]. It is well-known

that distributed computation is vulnerable to even a single

(Byzantine) adversary [4]. This relates to well-studied prob-

lems in Byzantine fault tolerance [5], though its application

to large-scale distributed optimization and learning is more

recent [4], [6].

In this paper, we study Byzantine-tolerant distributed op-

timization to learn a generalized linear model (e.g., linear

regression, logistic regression, etc.). Our framework for dis-

tributed computation is a model-parallelism architecture [7],

where several worker nodes work in parallel on optimizing

different subsets of coordinates of the parameter vector.

These parallel computations are combined together for opti-

mization through coordinate descent (CD) [7]–[9], which has

been shown to be very effective for solving generalized linear

models, and is particularly widely used for sparse logistic

regression, SVM, and LASSO [7]. Given its simplicity and

effectiveness, it is chosen over gradient descent (GD) in

such applications. This motivates us to explore how to make

coordinate descent robust to Byzantine adversaries.

We propose a data encoding method to deal with Byzantine

attacks, inspired by real-error correction [10]; see Figure 1.

Our encoding adds redundancy and enlarges the parameter

space, such that even if any t ≤ ⌈m−1
2 ⌉ worker nodes

maliciously deviate from their pre-specified programs and

collude, we can still execute distributed CD (on encoded data

together with decoding at the master node) correctly, with

O(m/(m− 2t)) multiplicative overhead (which is constant,

even if t < m/2 is a constant fraction of m) on the

computational complexity and space requirement than what

is required by the plain distributed CD, that does not provide

any adversarial protection.. Our design enables a trade-off

between the Byzantine resilience (in terms of the number

of adversarial nodes) and the redundancy of encoding, com-

putation at master and worker nodes (as stated in our main

result Theorem 1). Though encoding is a one-time process,

it has to be efficient to exploit the power of distributed

computation. We design a sparse encoding matrix, based on

real error-correction [10], for which the encoding process

incurs a factor of (2t + 1) one-time computation cost over

conventional data distribution. The redundancy introduced by

the encoding process is O(2m/(m−2t)), which is constant,

even if t is constant fraction of m.

Related work. Distributed computing with Byzantine ad-

versaries has a rich history since the work of [5], and

has received recent attention in the context of large-scale

distributed optimization and learning [3], [4], [6]. Coding-

theoretic techniques have recently emerged and been used

to mitigate the effect of stragglers, i.e., slow machines, for

computing the full gradients (in distributed GD) [11]–[14].

For the Byzantine adversaries, [3] proposed a method based

on data replication with non-trivial decoding at the master

node for gradient computation. Data encoding was used

in [15] both for distributed GD and CD, but for straggler

mitigation; the encoding in [15] has low-redundancy and is

efficient. Data encoding for combating the Byzantine attacks

was used in [16] for computing the gradients exactly in

distributed GD. As far as we know, making distributed

CD resilient against Byzantine attacks has not seen much

attention.

Paper organization. In Section II, we setup the problem

and describe the distributed CD algorithm. In Section III, we

explain our approach to make the distributed CD Byzantine-

tolerant, using data encoding and real error correction, and

state our main theorem. We give our encoding and decoding

methods in Section IV. Omitted details from this paper can

be found in the full version [17].

Notations. We denote vectors by bold small letters (e.g.,

x,y, etc.) and matrices by bold capital letters (e.g., R,X,

etc.). For any n ∈ N, we denote the set {1, 2, . . . , n} by [n].
For u ∈ R

n, we define supp(u) := {i ∈ [n] : ui 6= 0}.

�✁�✂✄✁☎✆✝✆✞✟☎✠✆✄�✄✝✆�✡✝✄✡☛✟✝☞✌✌ ✍�✌✝✄ ✎✏✏✏ ✎✑✎✒ �✌✝✄

Authorized licensed use limited to: UCLA Library. Downloaded on August 23,2020 at 06:28:05 UTC from IEEE Xplore. Restrictions apply.

II. PROBLEM SETUP AND PRELIMINARIES

We are given a data matrix X ∈ R
n×d, and we want to

find a generalized linear model w ∈ R
d that minimizes

arg min
w∈Rd

φ(Xw) :=

n∑

i=1

ℓ(〈xi,w〉). (1)

Here the loss function ℓ : R → R is a convex and differen-

tiable, and 〈xi,w〉 is the dot product between the i’th data

point and the parameter vector w. This encompasses popular

machine learning problems, such as linear regression, logistic

regression, etc. For U ⊆ [d], we write ∇Uφ(Xw) to denote

the gradient of φ(Xw) with respect to wU , where wU

denotes the |U|-length vector obtained by restricting w to

the coordinates in U . To make the notation less cluttered,

let φ′(Xw) denote the n-length vector, whose i’th entry is

equal to ℓ′(〈xi,w〉) := d
du

ℓ(u)|u=〈xi,w〉, the differentiation

of ℓ at 〈xi,w〉. Note that ∇φ(Xw) = XTφ′(Xw) and that

∇Uφ(Xw) = XT
Uφ

′(Xw), where XU denotes the n × |U|
matrix obtained by restricting the column indices of X to the

elements in U .

A. Distributed Coordinate Descent

Coordinate descent (CD) is an iterative algorithm, where,

in each iteration, we choose a set of coordinates and update

only those coordinates (while keeping the other coordinates

fixed). In distributed CD, we take advantage of the parallel

architecture to improve the running time of (centralized) CD.

In the distributed setting, we divide the data matrix vertically

into m parts and store the i’th part at the i’th worker node.

Concretely, assume, for simplicity, that m divides d. Let X =
[X1 X2 . . . Xm] and w = [wT

1 wT
2 . . . wT

m]T , where each

Xi is an n×(d/m) matrix and each wi is length d/m vector.

Worker i stores Xi and is responsible for updating wi. In

coordinate descent, since we update only a few coordinates

in each round, there are a few options on how to update these

coordinates in a distributed manner:

Subset of workers: Master picks a subset S ⊂ [m] of

workers and asks them to update their wi’s [9]. This may

not be good in the adversarial setting, because if only a small

subset of workers are updating their parameters, the adversary

can corrupt those workers and disrupt the computation.

Subset of coordinates for all workers: All the worker

nodes update only a subset of the coordinates of their

local parameter vector wi’s. Master can (deterministically

or randomly) pick a subset U (which may or may not be

different for all workers) of f ≤ d/m coordinates and asks

each worker to updates only those coordinates. If master

picks U deterministically, it can cycle through and update

all coordinates of the parameter vector in ⌈d/mf⌉ iterations.

In Algorithm 1, we give the distributed CD algorithm with

the second approach, where all the worker nodes update the

coordinates of their local parameter vectors for a single subset

U . We will adopt this approach in our method to make the

distributed CD Byzantine-resilient. Let r = d/m. For any i ∈
[m], let wi = [wi1 wi2 . . . wir]

T and Xi = [Xi1 Xi2 . . .Xir],
where Xij is the j’th column of Xi. For any i ∈ [m] and

U ⊆ [r], let wiU denote the |U|-length vector that is obtained

from wi by restricting its entries to the coordinates in U ;

similarly, let XiU denote the n × |U| matrix obtained by

restricting the column indices of Xi to the elements in U .

Adversary model. The adversary can corrupt any t of the

worker nodes and the compromised nodes can send local

outcomes that are arbitrarily far away from the actual local

outcomes.1 At some iteration, suppose worker i’s true out-

come is ui, then we can assume, without loss of generality,

that master receives ui + ei from worker i, where ei = 0

if the i’th worker is honest, otherwise can be arbitrary. The

adversarial nodes can collude, and can even know the data

of other workers. The master node does not know which

t worker nodes are corrupted, but knows t, the maximum

possible number of adversarial nodes.

Algorithm 1: Distributed Coordinate Descent

Each worker i starts with an arbitrary/random wi.

Repeat (until the stopping criteria is not satisfied)

1) Each worker i ∈ [m] computes Xiwi and sends it to

the master node. Note that Xw =
∑m

i=1 Xiwi.
2

2) Master computes φ′(Xw) and broadcasts it.

3) For some U ⊆ [r] (where U can be picked in a round-

robin fashion), each worker i ∈ [m] updates its local

parameter vector as

wiU ← wiU − α∇iUφ(Xw) (2)

while keeping the other coordinates of wi unchanged,

and sends the updated wi to the master, which can check

for the stopping criteria.

In Algorithm 1, for each worker i to update wi accord-

ing to (2), where ∇iUφ(Xw) = XT
iUφ

′(
∑m

j=1 Xjwj) and

worker i has only (Xi,wi), every other worker j sends

Xjwj to the master, who computes φ′(
∑m

j=1 Xjwj) and

sends it back to all the workers. Observe that, even if one

worker is corrupt, it can send an adversarially chosen vector

to make the computation at the master deviate arbitrarily

from the desired computation, which may adversely affect

the update at all the worker nodes subsequently.3 Similarly,

corrupt workers can send adversarially chosen information to

affect the stopping criterion.

III. OUR APPROACH

We solve this problem using data encoding and error

correction over real numbers. To combat the effect of ad-

versary, we add redundancy to enlarge the parameter space.

1Our results are also applicable against a stronger adversary, which can
adaptively choose which of the t worker nodes to attack in each iteration.
However, in this model, we do not allow the adversary to modify the stored
data at the attacked nodes; otherwise, over time, such an adversary can
corrupt all the data, rendering any defense impossible.

2After the 1st iteration, worker i need not compute Xiwi in every iteration,
as only a few coordinates of wi are updated, it only needs to compute it
for the updated coordinates.

3Specifically, suppose the i’th worker is corrupt and the adversary wants
master to compute φ′(Xw + e) for any arbitrary vector e ∈ R

n of its
choice, then the i’th worker can send Xiwi + e to the master.

�✁�✂

Authorized licensed use limited to: UCLA Library. Downloaded on August 23,2020 at 06:28:05 UTC from IEEE Xplore. Restrictions apply.

Let X̃R = XR, where R = [R1 R2 . . . Rm] ∈ R
d×pm

with pm ≥ d, and each Ri is a p × d matrix. We will

determine R and the value of p later. We consider R’s

which are of full row-rank. Let R+ := RT (RRT)−1

denote its Moore-Penrose inverse such that RR+ = Id,

where Id is the d × d identity matrix. Note that R+ is

of full column-rank. Let v = R+w be the transformed

vector, which lies in a larger (than d) dimensional space.

Let R+ = [(R+
1)

T (R+
2)

T . . . (R+
m)T]T , where each

R+
i := (R+)i is a p × d matrix. With this, by letting

v = [vT
1 vT

2 . . . vT
m]T , we have that vi = R+

i w for every

i ∈ [m]. Now, consider the following modified problem over

the encoded data.

arg min
v∈Rpm

φ(X̃Rv). (3)

Observe that, since R is of full row-rank, min
w∈Rd φ(Xw)

is equal to minv∈Rpm φ(X̃Rv); and from an optimal solution

to one problem we can obtain an optimal solution to the other

problem. We design an encoding/decoding scheme such that

when we optimize the encoded problem (3) using Algorithm

1, the vector v that we get in each iteration is of the form

v = R+w for some vector w ∈ R
d.4 It may not be clear

why we need this, but as we will see later, this property will

be crucial in our solution.

Now, instead of solving (1), we solve its encoded form (3)

using Algorithm 1, where each worker i stores X̃R
i = XRi

and is responsible for updating (some coordinates of) vi. In

the following, let U ⊆ [p] be a fixed arbitrary subset of [p].
Let v0 := R+w0 for some w0 at time t = 0. Suppose, at

the beginning of the t’th iteration, we have vt = R+wt for

some wt, and each worker i updates vt
iU according to

vt+1
iU = vt

iU − α∇iUφ(X̃
Rvt), (4)

where ∇iUφ(X̃
Rvt) = (X̃R

iU)
Tφ′(X̃Rvt). Recall that each

Ri is a d×p matrix, and each R+
i := (R+)i is a p×d matrix.

We denote by RiU the d×|U| matrix obtained by restricting

the columns of Ri to the elements of U . Analogously, we

denote by R+
iU := (R+)iU the |U| × d matrix obtained by

restricting the rows of R+
i to the elements of U . With this,

we can write X̃R
iU = XRiU . Now, (4) can be equivalently

written as

vt+1
iU = vt

iU − αRT
iUX

Tφ′(X̃Rvt). (5)

In order to update vt
iU , worker i requires φ′(X̃Rvt), where

X̃Rvt =
∑m

j=1 X̃
R
j v

t
j and worker i has only (X̃R

i ,v
t
i). In

Section IV-A, we give a method which provides each worker

access to φ′(X̃Rvt) in every iteration t.
Our goal in each iteration of CD is to update some

coordinates of the original parameter vector w; instead, by

solving the encoded problem, we are updating coordinates of

the transformed vector v. We would like to design an algo-

rithm/encoding such that it has exactly the same convergence

properties as if we are running the distributed CD on the

4If such a w exists, then it is unique. This follows from the fact that R+

is of full column-rank

original problem without any adversary! For this, naturally,

we would like our algorithm to satisfy the following property:

Update on any (small) subset of coordinates of w should

be achieved by updating some (small) subset of coordinates of

vi’s; and, by updating those coordinates of vi’s, we should

be able to efficiently recover the correspondingly updated

coordinates of w. Furthermore, this should be doable despite

the errors injected by the adversary in every iteration of the

algorithm.

Note that if each coordinate of v depends on too many

coordinates of w, then updating a few coordinates of v may

affect many coordinates of w, and it becomes information-

theoretically infeasible to satisfy the above property (even

without the presence of an adversary). This imposes a

restriction that each row of R+ must have few non-zero

entries, in such a way that updating vt
iU ’s, for any choice

of U ⊆ [p], will collectively update only a subset (which

may potentially depend on U) of coordinates of the original

parameter vector wt, and we can uniquely and efficiently

recover those updated coordinates of wt, even from the

erroneous vectors {vt+1
iU + eiU}

m
i=1, where at most t out

of m error vectors {eiU}
m
i=1 are non-zero and may have

arbitrary entries. In order to achieve this, we will design a

sparse encoding matrix R+ (which in turn determines R),

that satisfies the following properties:

P.1 R+ has structured sparsity, which induces a map f :
[p] → P([d]) (where P([d]) denotes the power set of

[d]) such that

a) {f(i) : i ∈ [p]} partitions {1, 2, . . . , d}, i.e., for every

i, j ∈ [p], such that i 6= j, we have f(i) ∩ f(j) = ∅
and that

⋃p

i=1 f(i) = [d].
b) |f(i)| = |f(j)| for every i, j ∈ [p− 1], and |f(p)| ≤
|f(i)|, for any i ∈ [p− 1].

c) For any U ⊆ [p], define f(U) := ∪j∈Uf(j). If we

update vt
iU , ∀i ∈ [m], according to (5), it automati-

cally updates wt
f(U) according to

wt+1
f(U) = wt

f(U) − αXT
f(U)φ

′(Xwt). (6)

If we set vt+1

iU
:= vt

iU
and wt+1

f(U)
:= wt

f(U)
, then

vt+1 = R+wt+1, i.e., our invariant holds.

Note that (6) is the same update rule if we run the plain

CD algorithm to update wf(U). In fact, our encoding matrix

satisfies a stronger property, that vt+1
iU = R+

iU,f(U)w
t+1
f(U)

holds for every i ∈ [m], U ⊆ [p], where R+
iU,f(U) denotes

the |U| × |f(U)| matrix obtained from R+
iU by restricting its

column indices to the elements in f(U).

P.2 We can efficiently recover wt+1
f(U) from the erroneous

vectors {vt+1
iU + eiU}

m
i=1, where at most t of eiU ’s are

non-zero and may have arbitrary entries. Since vt+1
iU =

R+
iU,f(U)w

t+1
f(U), for every i ∈ [m], U ⊆ [p], this property

requires that not only R+, but most of its sub-matrices

also have error correcting capabilities.

Remark 1. Note that P.1 implies that for every i ∈ [p],
we have |f(i)| ≤ d/p. As we see later, this will be equal

�✁�✂

Authorized licensed use limited to: UCLA Library. Downloaded on August 23,2020 at 06:28:05 UTC from IEEE Xplore. Restrictions apply.

w
t
f(U ′)

M broadcasts w
t
f(U ′)

M Dec

W1

L1X

W2

L2X

W3

L3X

Wm

LmX

L
1
X
w

t

L
2
X
w

t
+
e
2

L
3 X

w
t

L
mX

w t
+
e
m

Xw
t

Compute
φ′(Xw

t)

φ′(Xw
t)

M broadcasts φ′(Xw
t)

M Dec

W1

XR1

W2

XR2

W3

XR3

Wm

XRm

v
t+

1
1U

v
t+

1
2
U

v t+
1

3U
+
e
3U

v t+1mU +
e
mU

w
t+1
f(U)

t← t+ 1;U ′ ← U

Fig. 1 This figure shows our 2-round approach to the Byzantine-resilient distributed coordinate descent (CD) for solving (1) using data encoding and real

error-correction. We encode X with the encoding matrix [R1 . . . Rm] ∈ R
d×pm and store X̃

R
i := XRi at the i’th worker and solve (3) over an

enlarged parameter vector v = R
+
w. At the t’th step, for some U ⊆ [p], the update at the i’th worker is v

t+1
iU = v

t
iU − αRT

iUX
Tφ′(X̃R

v
t), which

requires φ′(X̃R
v
t), where X̃

R
v
t = Xw. The first part of the figure is for providing φ′(Xw

t) to every worker in each iteration so that they can update

v
t
iU ’s. For this, we encode X using the encoding matrix [LT

1 . . . L
T
m]T ∈ R

p′m×n and store X̃
L
i := LiX at worker i. The encoding has the property

that we can recover Xw
t from the erroneous vectors {X̃L

i w
t + ei}

m
i=1, where at most t of the ei’s are non-zero and can be arbitrary. We can make

it computationally more efficient by observing that in each iteration, only a subset of coordinates of w are being updated: suppose we updated v
t
iU′ ’s

in the (t − 1)’st iteration, which automatically updated w
t
f(U′)

. Since w
t
[d]\f(U′)

remain unchanged, we need to send only w
t
f(U′)

to the workers –

worker i can store the result from the previous iteration with itself, combines it with the current local computation, and sends X̃
L
i w

t to the master. The
set of corrupt workers may be different in different rounds – the corrupt ones are shown in red color and they can send arbitrary outcomes to master. Once

master has recovered Xw
t, it computes φ′(Xw

t) and broadcasts it; upon receiving it worker i updates v
t+1
iU and sends it back. By P.1, this reflects an

update on w
t+1
f(U)

according to (6); and by P.2, the master can recover wt+1
f(U)

.

to m/(1 + ǫ) for some ǫ > 0 which is determined by the

corruption threshold. This means that in each iteration of the

CD algorithm running on the modified encoded problem, we

will be effectively updating the coordinates of the parameter

vector w in chunks of size m/(1+ǫ) or its integer multiples.

In particular, if each worker i updates k coordinates of

vi, then km/(1 + ǫ) coordinates of w will get updated.

For comparison, Algorithm 1 updates km coordinates of the

parameter vector w in each iteration, if each worker updates

k coordinates in that iteration.

In the next section, we design an encoding matrix R+ and

a decoding method that satisfy P.1 and P.2. The main result

of this paper is stated below, which is proved in the full

version [17]. Our algorithm is described in Figure 1.

Theorem 1 (Main Result). Our Byzantine-resilient dis-

tributed CD algorithm has the following guarantees.

• It can tolerate t ≤
⌊

ǫ
1+ǫ
· m2

⌋
corrupt worker nodes.

• Total storage requirement is roughly 2(1 + ǫ)|X|.

• Total encoding time is O
(
nd

(
ǫ

1+ǫ
m+ 1

))
.

• If each worker i updates τ coordinates of vi, then the

computational complexity in each iteration

– at each worker node is O((1 + ǫ)nτ).
– at the master node is O((1 + ǫ)nm+ τm2).

Here ǫ > 0 is a free parameter.

Remark 2. In the plain distributed CD described in Algo-

rithm 1 that does not provide any adversarial protection,

updating τ coordinates of the parameter vector requires

O(nτ) time at each worker node (which is a (1 + ǫ) factor

less than ours) and O(nm) time at the master node, which,

again, is a (1+ǫ) factor less than ours if each worker updates

τ ≤ (1 + ǫ) n
m

coordinates in each iteration. In particular,

for ǫ = 2, we can tolerate up to m/3 corrupt worker nodes,

without sacrificing upon the computational complexity and

space requirement beyond a constant factor.

IV. ENCODING AND DECODING

In this section we design our generic encoding matrix and

give an overview of our decoding algorithm for that. Let

F ∈ R
k×m (k < m) be an error correction matrix over R, i.e.,

if e ∈ R
m is sparse, then we can efficiently recover e from

Fe. There are many choices for the matrix F that can handle

different levels of sparsity with varying decoding complexity.

We can choose any of these matrices depending on our need,

and this will not affect the design of our encoding matrix

later. In particular, we can use a k×m Vandermonde matrix

along with the Reed-Solomon decoding, which can correct

up to k/2 errors (i.e., we can recover e from Fe, provided e

has at most k/2 non-zero entries) and has O(m2) decoding

complexity [18]. We take k = 2t. Let N (F) ⊂ R
m denote

the null-space of F. Since rank(F) = k, dimension of N (F)
is q = (m−k). Let {b1,b2, . . . ,bq} be an orthonormal basis

of N (F), and let bi = [bi1 bi2 . . . bim]T , for i ∈ [q]. Define

the following matrix for each i ∈ [m]:

Si =




b1i . . . bqi

. . .

b1i . . . bqi

b1i . . . bli




p×d

(7)

�✁�✁

Authorized licensed use limited to: UCLA Library. Downloaded on August 23,2020 at 06:28:05 UTC from IEEE Xplore. Restrictions apply.

where q = (m−2t), l = d−(p−1)q, and p = ⌈d
q
⌉. Note that

1 ≤ l < q, and if q divides d, then l = q. All the unspecified

entries of Si are zero. Let S = [ST
1 ST

2 . . . ST
m]T ∈ R

pm×d.

It is easy to verify that S has orthonormal columns, which

implies that S+ = ST . We take R = ST , which implies that

R+ = S. In order to show that S satisfies P.1-P.2, define the

function f as follows:

f(i) :=

{
[(i− 1) ∗ q + 1 : i ∗ q] if 1 ≤ i < p,

[(p− 1) ∗ q + 1 : d] if i = p.

It is evident from the definition that f satisfies the first two

conditions of P.1. For the 3rd condition, we crucially use

the fact that S has orthonormal columns and the observation

that, for any U ⊆ [p], all the columns of SiU whose indices

belong to [d] \ f(U) are identically zero, which implies that

SiUw = SiU,f(U)wf(U) holds for every w ∈ R
d.

Now we show that S satisfies P.2. Upon receiving {vt+1
iU +

eiU}
m
i=1, where vt+1

iU = SiUw
t+1, and at most t of eiU ’s are

non-zero and may have arbitrary entries, master rearranges

this and equivalently writes |U| systems of linear equations

h̃i = S̃i,f(U)w
t+1
f(U) + ẽi, i ∈ U , (8)

where, for every i ∈ U , ẽi = [e1i, e2i, . . . , emi]
T with

|supp(ẽi)| ≤ t, and S̃i,f(U) is an m× |f(U)| matrix whose

j’th row is equal to the i’th row of SjU , for every j ∈ [m]. It

is easy to verify that FS̃i,f(U) = 0 for every i ∈ [m],U ⊆ [p].

Now, by multiplying (8) by F and letting fi = Fh̃i, we get

fi = Fẽi. In order to find the corrupt worker nodes, master

takes a linear combination of fi’s with coefficients αi’s from

an absolutely continuous function (e.g., the Gaussian distri-

bution) to obtain f̃ = Fẽ, where ẽ =
∑|U|

i=1 αiẽi and supp(ẽ)
is equal to the set of corrupt worker nodes with probability 1.

Now, using the Reed-Solomon decoding, master can recover

ẽ, and discards all the information received from the corrupt

nodes. Since we have enough redundancy in the data and our

encoding matrix is structured, master can efficiently recover

wt+1
f(U) from the remaining information.

A. Providing X̃Rvt to Each Worker

In order to update vt
iU according to (5), worker i needs

φ′(X̃Rvt). Let v = vt. Since v = R+w for some w, we

have X̃Rv = XRv = Xw. So, it suffices to compute Xw

at the master node – once master has Xw, it can locally

compute φ′(Xw) and send it to all the workers. Computing

Xw is the distributed matrix-vector (MV) multiplication

problem, where the matrix X is fixed and we want to compute

Xw for any vector w in the presence of an adversary. For this

we encode X using an encoding matrix L ∈ R
(p′m)×n. Let

L = [LT
1 LT

2 . . . LT
m]T , where each Li is a p′×n matrix with

p′ = ⌈ n
m−2t⌉. Each Li is similar to Si in (7); it has p′ rows

and n columns, and has the structure as that of Si. Worker

i stores X̃L
i = LiX. To compute Xw, master sends w to

all the workers; worker i responds with LiXw + ei, where

ei = 0 if the i’th worker is honest, otherwise can be arbitrary;

upon receiving {LiXw + ei}
m
i=1, where at most t of the

ei’s can be non-zero, master applies the decoding procedure

and recovers Xw back. We can improve the computational

complexity of this method significantly by observing that, in

each iteration of our distributed CD algorithm, only wf(U)

gets updated and w
f(U)

remains unchanged. This implies

that for computing Xw, master only needs to send wf(U)

to the workers, as workers can store the result of local MV

product from the previous iteration with themselves. This

significantly reduces the local computation at the worker

nodes, as now they only need to perform a local MV product

of a matrix of size p′×|f(U)| and a vector of length |f(U)|.

ACKNOWLEDGEMENTS

The work of the authors was partially supported by the Army Research
Laboratory under Cooperative Agreement W911NF-17-2-0196, by the UC-
NL grant LFR-18-548554, and by the NSF award 1740047. The views and
conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or
implied, of the Army Research Laboratory or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation here on.

REFERENCES

[1] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compu-

tation: Numerical Methods. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1989.

[2] J. Konecný, “Stochastic, distributed and federated optimization for
machine learning,” Ph.D. dissertation, University of Edinburgh, 2017.

[3] L. Chen, H. Wang, Z. B. Charles, and D. S. Papailiopoulos, “DRACO:
byzantine-resilient distributed training via redundant gradients,” in
ICML, 2018, pp. 902–911.

[4] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer, “Machine
learning with adversaries: Byzantine tolerant gradient descent,” in
NIPS, 2017, pp. 118–128.

[5] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–
401, Jul. 1982.

[6] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning
in adversarial settings: Byzantine gradient descent,” POMACS, vol. 1,
no. 2, pp. 44:1–44:25, 2017.

[7] J. K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin, “Parallel
coordinate descent for l1-regularized loss minimization,” in ICML,
2011, pp. 321–328.

[8] S. J. Wright, “Coordinate descent algorithms,” Math. Program., vol.
151, no. 1, pp. 3–34, 2015.

[9] P. Richtárik and M. Takáč, “Parallel coordinate descent methods for
big data optimization,” Mathematical Programming, vol. 156, no. 1,
pp. 433–484, Mar 2016.

[10] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE

Trans. Information Theory, vol. 51, no. 12, pp. 4203–4215, 2005.
[11] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,

no. 2, pp. 74–80, Feb. 2013.
[12] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient

coding: Avoiding stragglers in distributed learning,” in ICML, 2017,
pp. 3368–3376.

[13] N. Raviv, R. Tandon, A. Dimakis, and I. Tamo, “Gradient coding from
cyclic MDS codes and expander graphs,” in International Conference

on Machine Learning, ICML, 2018, pp. 4302–4310.
[14] K. Lee, M. Lam, R. Pedarsani, D. S. Papailiopoulos, and K. Ramchan-

dran, “Speeding up distributed machine learning using codes,” IEEE

Trans. Information Theory, vol. 64, no. 3, pp. 1514–1529, 2018.
[15] C. Karakus, Y. Sun, S. N. Diggavi, and W. Yin, “Straggler mitigation

in distributed optimization through data encoding,” in NIPS, 2017, pp.
5440–5448.

[16] D. Data, L. Song, and S. N. Diggavi, “Data encoding for byzantine-
resilient distributed gradient descent,” in Allerton Conference on Com-

munication, Control, and Computing, 2018.
[17] ——, “Data encoding for byzantine-resilient distributed optimization,”

[Available Online].
[18] M. Akçakaya and V. Tarokh, “A frame construction and a universal

distortion bound for sparse representations,” IEEE Trans. Signal Pro-

cessing, vol. 56, no. 6, pp. 2443–2450, 2008.

�✁�✂

Authorized licensed use limited to: UCLA Library. Downloaded on August 23,2020 at 06:28:05 UTC from IEEE Xplore. Restrictions apply.

